首页> 外文OA文献 >Theory and Practice of Electron Diffraction from Single Atoms and Extended Objects using an Electron Microscope Pixel Array Detector
【2h】

Theory and Practice of Electron Diffraction from Single Atoms and Extended Objects using an Electron Microscope Pixel Array Detector

机译:单原子与原子电子衍射的理论与实践   使用电子显微镜像素阵列检测器的扩展对象

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

What does the diffraction pattern from a single atom look like? How does itdiffer from the scattering from long range potential? With the development ofnew high-dynamic range pixel array detectors to measure the complete momentumdistribution, these questions have immediate relevance for designing andunderstanding momentum-resolved imaging modes. We explore the asymptotic limitsof long range and short range potentials. We use a simple quantum mechanicalmodel to explain the general and asymptotic limits for the probabilitydistribution in both and real and reciprocal space. Features in the scatteringpotential much larger than the probe size cause the bright-field disk todeflect uniformly, while features much smaller than the probe size, instead ofa deflection cause a redistribution of intensity within the bright-field disk.Because long range and short range features are encoded differently in thediffraction pattern, it is possible to separate their contributions indifferential phase contrast (DPC) or Center-of-Mass (CoM) imaging. The shapeprofiles for atomic resolution CoM imaging are dominated by the shape of theprobe gradient and not the highly-singular atomic potentials or their localfields. Instead, only the peak height shows an atomic-number sensitivity, whoseprecise dependence is determined by the convergence angle. At lower convergenceangles, the contrast oscillates with increasing atomic number, similar tobright field imaging. The range of collection angles impacts DPC and CoMimaging differently, with CoM being more sensitive to the upper cutoff limit,while DPC is more sensitive to the lower cutoff.
机译:来自单个原子的衍射图样是什么样的?它与远距离电势的散射有何不同?随着新型高动态范围像素阵列检测器的发展,以测量完整的动量分布,这些问题对于设计和理解动量分辨成像模式具有直接的现实意义。我们探索了远距离和近距离电势的渐近极限。我们使用一个简单的量子力学模型来解释在实空间和倒数空间中概率分布的一般极限和渐近极限。散射势远大于探针尺寸的特征会导致明场圆盘均匀偏转,而特征远小于探针尺寸的特征会导致明场圆盘内强度重新分布,而不是偏转导致强度重新分布。在衍射图样中对它们的编码方式不同,可以将它们的贡献区分为微分相位对比(DPC)或质量中心(CoM)成像。原子分辨率CoM成像的形状轮廓由探针梯度的形状决定,而不是由高度奇异的原子势或它们的局部场决定。取而代之的是,只有峰高显示出原子序数敏感性,其精确性取决于会聚角。在较低的会聚角处,对比度随原子序数的增加而振荡,类似于明亮的场成像。收集角度的范围对DPC和CoMimaging的影响不同,其中CoM对上限阈值更敏感,而DPC对下限阈值更敏感。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号